

ILL. No. 65. MEMORIAL ARCH, WITH CHURCH IN BACKGROUND, STANFORD UNIVERSITY, SHOWING TYPES OF CARVED WO WITH THE SANDSTONE.

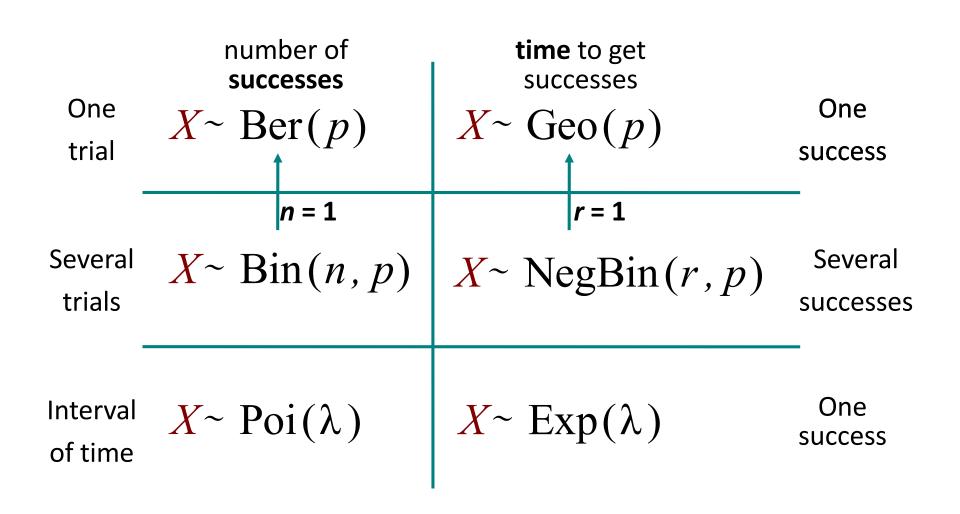
Learning Goals

- 1. Comfort using new discrete random variables
- 2. Integrate a density function (PDF) to get a probability
 - 3. Use a cumulative function (CDF) to get a probability

Discrete Distributions

Don't have to derive all of the following distributions. We want you to get a sense of how random variables work.

Grid of Random Variables



Geometric Random Variable

- X is <u>Geometric</u> Random Variable: X ~ Geo(p)
 - X is number of independent trials until first success
 - p is probability of success on each trial
 - X takes on values 1, 2, 3, ..., with probability:

$$P(X = n) = (1 - p)^{n-1}p$$

$$E[X] = \frac{1}{p}$$

$$Var(X) = \frac{1-p}{p^2}$$

Negative Binomial Random Variable

- X is Negative Binomial RV: X ~ NegBin(r, p)
 - X is number of independent trials until r successes
 - p is probability of success on each trial
 - X takes on values r, r + 1, r + 2..., with probability:

$$P(X = n) = {n-1 \choose r-1} p^r (1-p)^{n-r}$$
, where $n = r, r+1,...$

- E[X] = r/p $Var(X) = r(1-p)/p^2$
- Note: $Geo(p) \sim NegBin(1, p)$

New Handout

Chris Piech CS 109

All Discrete Distributions

Handout Oct 12, 2018

Bernoulli

An indicator variable that takes on the value 1 or 0. Often the variable is defined to be 1 if an underlying event has occurred, 0 otherwise.

Notation $X \sim \text{Bern}(p)$

Parameters: p: The probability of the variable being 1

Range(X): {0, 1}

penf: $Pr(X = k) = \begin{cases} p & \text{if } k = 1\\ (1-p) & \text{if } k = 0 \end{cases}$

E[X]: /

Var(X): p(1-p)

Note: Sometimes in machine learning algorithms a derivable version of the PMF is used: $f(X = k) = p^k(1 - p)^{1-k}$

Binomial

A variable which represents the number of successes in a fixed number of independent trials. The probability of success must be the same for each trial.

Notation $X \sim Bin(n, p)$

Parameters: n: the number of trials

p: the probability of success in each trial

Range(X): $\{0, 1, ..., n\}$

pmf: $Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

E[X]: n

Var(X): np(1-p)

Note: Bin(1, p) = Bern(p)

Poisson

The number of events occurring in a fixed interval of time or space if these events occur independently with a constant rate.

Notation $X \sim Poi(\lambda)$

Parameters: \(\lambda\): the rate of events in one interval

Range(X): $\{0, 1, \ldots, \infty\}$

pmf: $Pr(X = k) = \frac{\lambda^k e^{-k}}{k!}$

E[X]: λ

Var(X):

Note: The Poisson is the number of events in an interval of time. The Exponential is a continuous distribution which is the time until the next event. They have the same parameter (λ) .

Geometri

The number of independent Bernoulli trials until the first success.

Notation $X \sim \text{Geo}(p)$

Parameters: p: the probability of success of each trial

Range(X): $\{1, 2, \ldots, \infty\}$

pmf: $Pr(X = k) = (1 - p)^{k-1}p$

E[X]: 1/p

Var(X): $\frac{1}{e^2}$

Discrete Distributions

Bernoulli:

indicator of coin flip X ~ Ber(p)

Binomial:

successes in n coin flips X ~ Bin(n, p)

Poisson:

successes in n coin flips X ~ Poi(λ)

Geometric:

coin flips until success X ~ Geo(p)

Negative Binomial:

trials until r successes X ~ NegBin(r, p)

Zipf:

- The popularity rank of a random word, from a natural language
- X ~ Zipf(s)

Discrete Distributions

Bernoulli:

indicator of coin flip X ~ Ber(p)

Binomial:

successes in n coin flips X ~ Bin(n, p)

Poisson:

successes in n coin flips X ~ Poi(λ)

Geometric:

coin flips until success X ~ Geo(p)

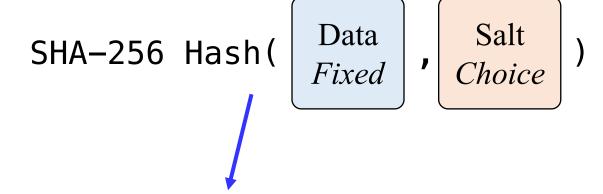
Negative Binomial:

trials until r successes X ~ NegBin(r, p)

Zipf:

- The popularity rank of a random word, from a natural language
- X ~ Zipf(s)

Bit Coin Mining



Number that looks like random bits

You "mine a bitcoin" if, for given data D, you find a number N such that Hash(D, N) produces a string that starts with g zeroes.

Midterm Question: Bit Coin Mining

You "mine a bitcoin" if, for given data D, you find a number N such that Hash(D, N) produces a string that starts with g zeroes.

(a) What is the probability that the first number you try will produce a bit string which starts with *g* zeroes (in other words you mine a bitcoin)?

(b) How many different numbers do you expect to have to try before you mine five bitcoins?

Dating at Stanford

Each person you date has a 0.2 probability of being someone you spend your life with. What is the average number of people one will date? What is the standard deviation?

Equity in the Courts

Berghuis v. Smith

If a group is underrepresented in a jury pool, how do you tell?

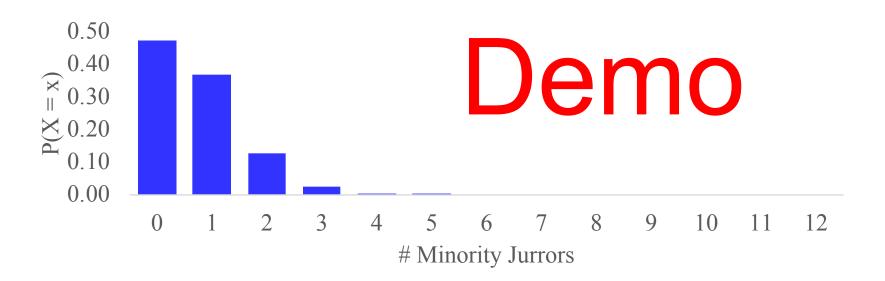
- Article by Erin Miller –January 22, 2010
- Thanks to (former CS109er) Josh Falk for this article

Justice Breyer [Stanford Alum] opened the questioning by invoking the binomial theorem. He hypothesized a scenario involving "an urn with a thousand balls, and sixty are blue, and nine hundred forty are purple, and then you select them at random... twelve at a time." According to Justice Breyer and the binomial theorem, if the purple balls were under represented jurors then "you would expect... something like a third to a half of juries would have at least one minority person" on them.

Justin Breyer Meets CS109

- Approximation using Binomial distribution
 - Assume P(blue ball) constant for every draw = 60/1000
 - X = # blue balls drawn. $X \sim Bin(12, 60/1000 = 0.06)$
 - $P(X \ge 1) = 1 P(X = 0) \approx 1 0.4759 = 0.5240$

In Breyer's description, should actually expect just over half of juries to have at least one non-white person on them

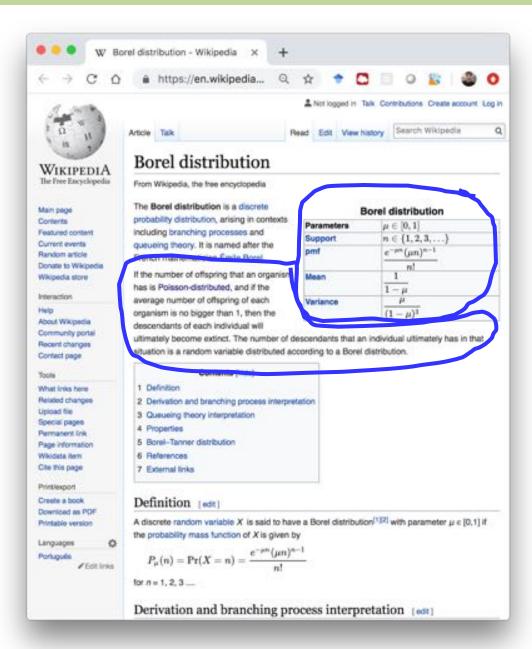


Learning Goal: Use new RVs

You are learning about servers...

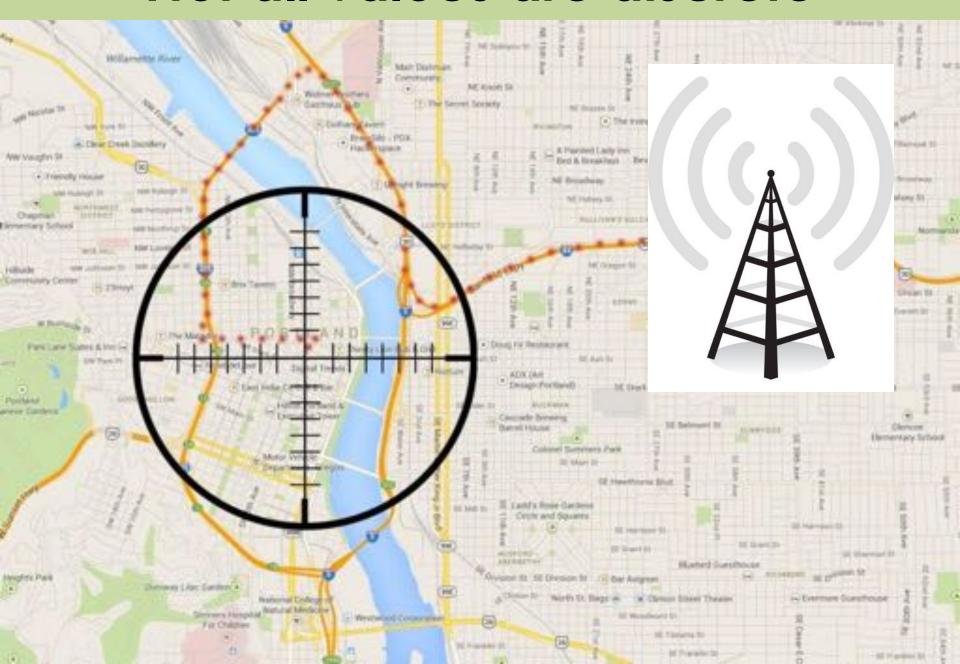
You read about the MD1 queue...

You find a paper that says the server "busy period" is distributed as a Borel with parameter $\mu = 0.2$...



Big hole in our knowledge

Not all values are discrete



random()?

You are running to the bus stop. You don't know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:20pm.

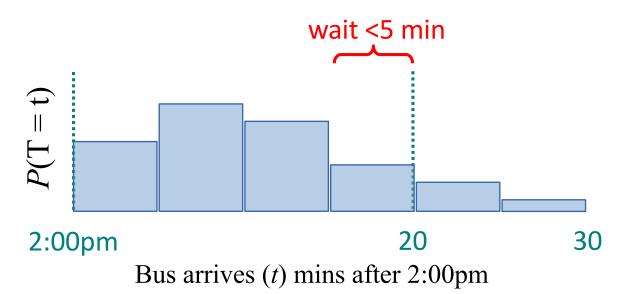
What is P(wait < 5 minutes)?

What is the probability that the bus arrives at: 2:17pm and 12.12333911102389234 seconds?

You are running to the bus stop. You don't know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:15pm.

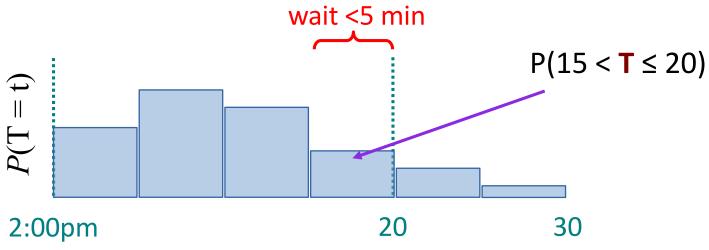
What is P(wait < 5 minutes)?



You are running to the bus stop. You don't know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:15pm.

What is P(wait < 5 minutes)?

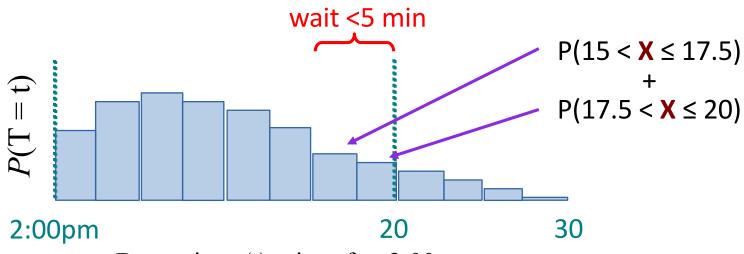


Bus arrives (t) mins after 2:00pm

You are running to the bus stop. You don't know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:15pm.

What is P(wait < 5 minutes)?

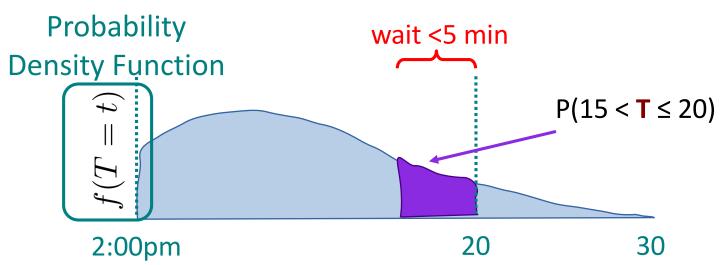


Bus arrives (t) mins after 2:00pm

You are running to the bus stop. You don't know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:15pm.

What is P(wait < 5 minutes)?



Bus arrives (t) mins after 2:00pm

The **probability density function** (PDF) of a continuous random variable represents the relative likelihood of various values.

Units of probability *divided by units of X*. **Integrate it** to get probabilities!

$$P(a < X < b) = \int_{x=a}^{b} f(X = x) dx$$

The **probability density function** (PDF) of a continuous random variable represents the relative likelihood of various values.

Units of probability *divided by units of X*. **Integrate it** to get probabilities!

$$P(a < X < b) = \int_{x=a}^{b} f_X(x) dx$$

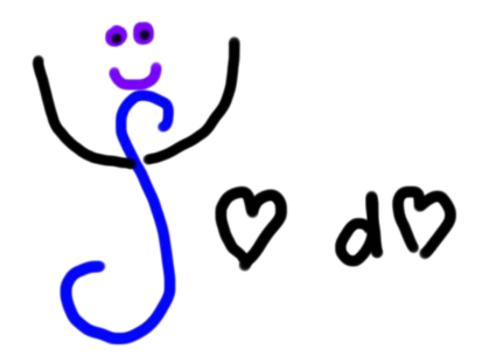
This is another way to write the PDF

The **probability density function** (PDF) of a continuous random variable represents the relative likelihood of various values.

Units of probability *divided by units of X*. **Integrate it** to get probabilities!

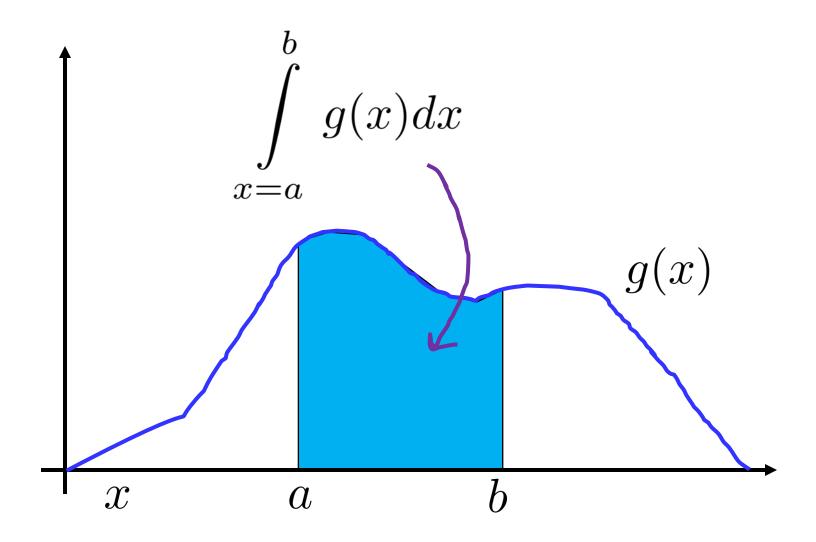
$$P(a < X < b) = \int_{x=a}^{b} f(X = x)dx$$

Integrals



*loving, not scary

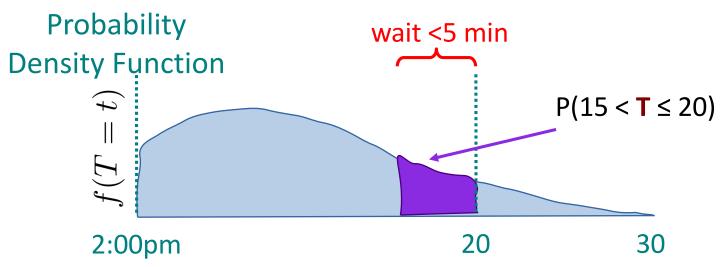
Integrals



You are running to the bus stop. You don't know exactly when the bus arrives. You have a distribution of probabilities.

You show up at 2:15pm.

What is P(wait < 5 minutes)?



Bus arrives (t) mins after 2:00pm

Properties of PDFs

The integral of a PDF gives a probability. Thus:

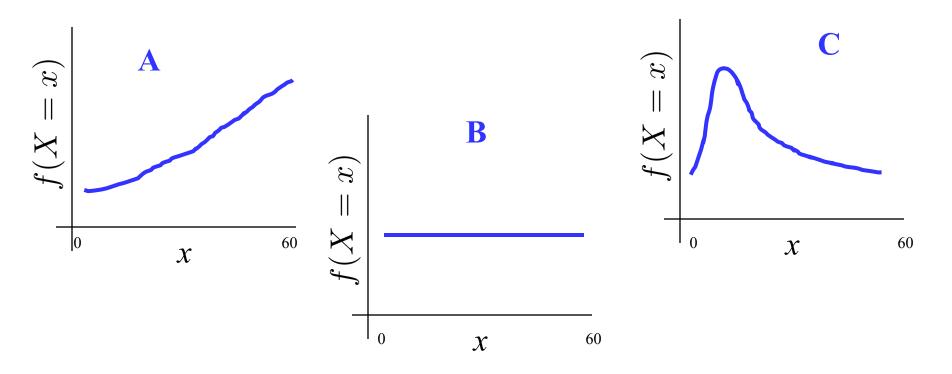
$$0 \le \int_{x=a}^{b} f(X=x) \ dx \le 1$$

$$\int_{0}^{\infty} f(X=x) \ dx = 1$$

What do you get if you integrate over a probability *density* function?

A probability!

Probability density functions articulate $\emph{relative}$ belief. Let X be a random variable which is the # of minutes after 2pm that the bus arrives at the stop:

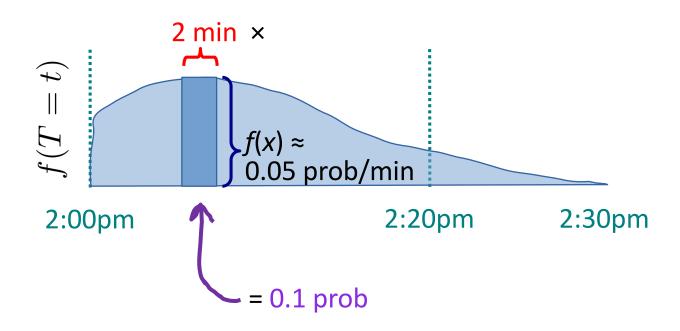


Which of these represent that you think the arrival is more likely to be close to 3:00pm

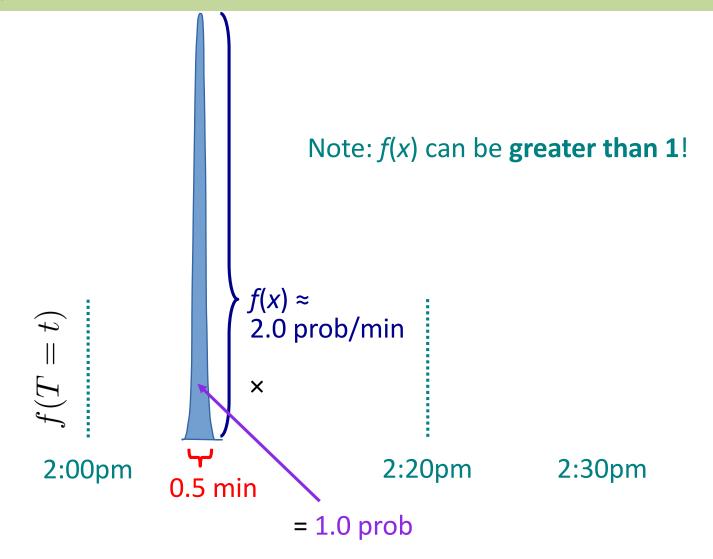
The ratio of probability densities is meaningful

f(X = x) is **Not** a Probability

Rather, it has "units" of: probability divided by units of X.



f(X = x) is **Not** a Probability



$$f(X = x)$$
 vs $P(X = x)$

"The probability that a **discrete** random variable X takes on the value little x."

$$P(X=x)$$

Aka the PMF

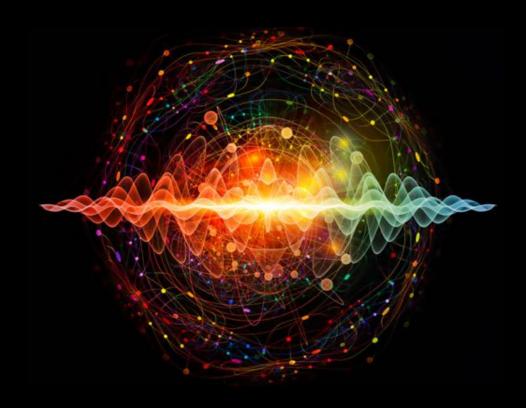
"The *derivative* of the probability that a **continuous** random variable X takes on the value little x."

$$f(X=x)$$

Aka the PDF

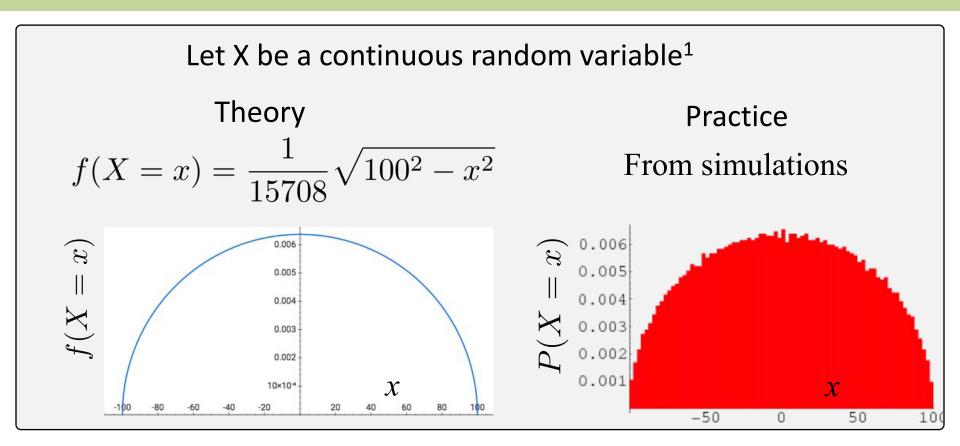
They are both measures of how likely X is to take on the value x.

Simple Example



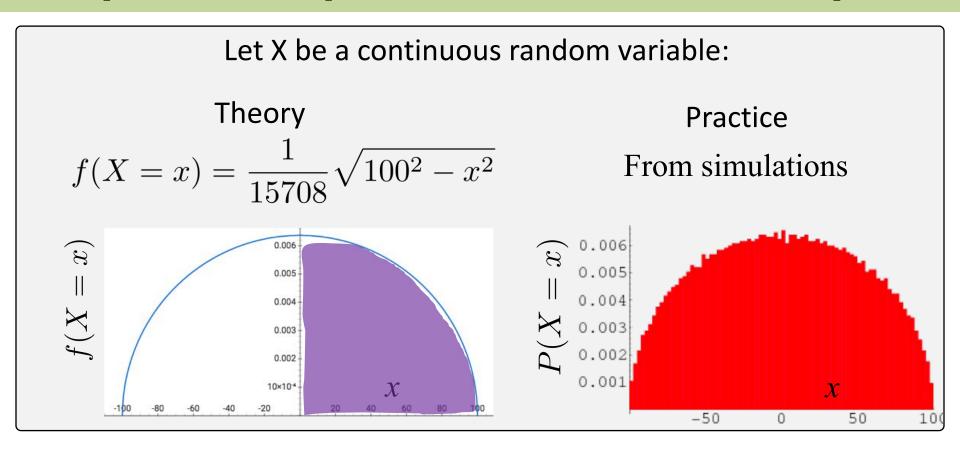
Consider a random 5000x5000 matrix, where each element in the matrix is Uniform(0,1). What is the probability that a selected eigenvalue (λ) of the matrix is greater than 0?*

* With help from Wigner, Chris is going to rephrase this problem



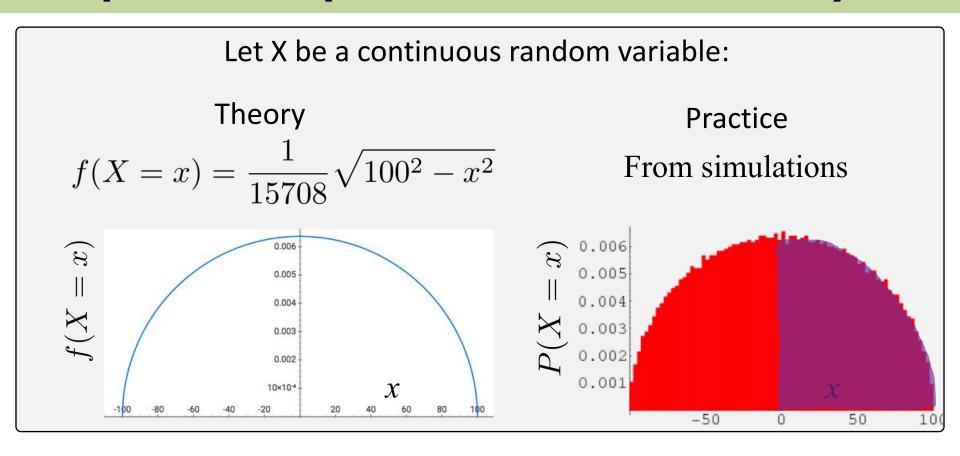
$$P(X > 0) = ?$$

¹ X represents the eigenvalue of a 5000x5000 matrix of uniform random variables



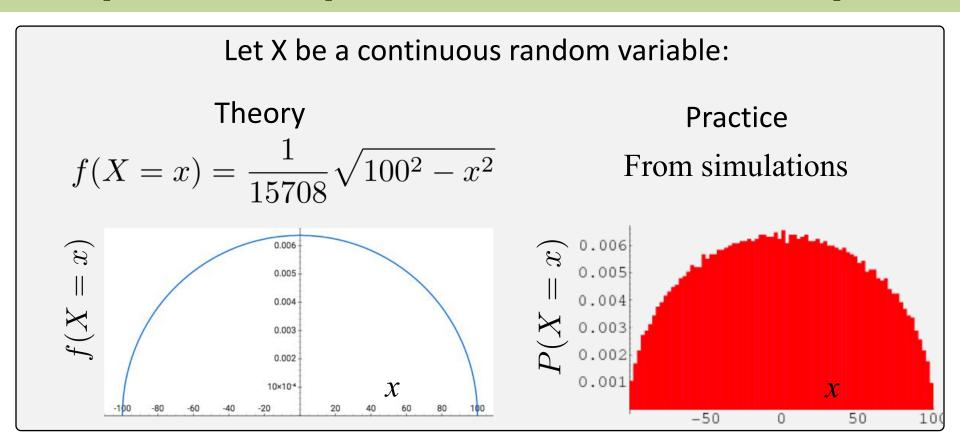
Approach #1: Integrate over the PDF

$$P(X > 0) = \int_{0}^{100} f(X = x) \ dx$$



Approach #2: Discrete Approximation

$$P(X > 0) \approx \sum_{i=0}^{100} P(X = i)$$



Approach #3: Know Semi-Circles

$$P(X > 0) = \frac{1}{2}$$

What do you get if you integrate over a probability *density* function?

A probability!

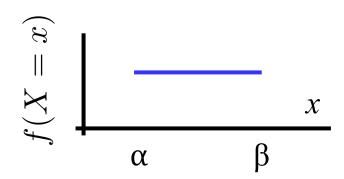
Uniform Random Variable

A **uniform** random variable is **equally likely** to be any value in an interval.

$$X \sim \mathrm{Uni}(\alpha, \beta)$$

Probability Density

$$f(X = x) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha \le x \le \beta \\ 0 & \text{otherwise} \end{cases}$$



Properties

$$E[X] = \frac{\beta - \alpha}{2}$$

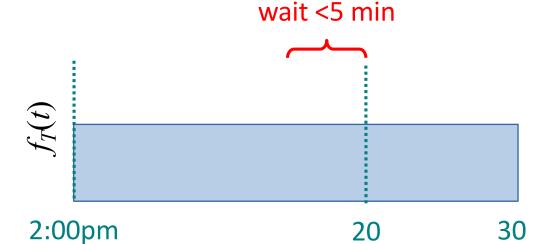
$$Var(X) = \frac{(\beta - \alpha)^2}{12}$$

Uniform Bus

You are running to the bus stop. You don't know exactly when the bus arrives. You believe all times between 2 and 2:30 are equally likely.

You show up at 2:15pm. What is P(wait < 5 minutes)?

$$T \sim \text{Uni}(\alpha = 0, \beta = 30)$$



Bus arrives (t) mins after 2:00pm

$$P(\text{Wait } < 5) = \int_{15}^{20} \frac{1}{\beta - \alpha} dx$$
$$= \frac{x}{\beta - \alpha} \Big|_{15}^{20}$$
$$= \frac{x}{30 - 0} \Big|_{15}^{20} = \frac{5}{30}$$

Expectation and Variance

For <u>discrete</u> RV *X*:

$$E[X] = \sum_{x} x \cdot p(X = x)$$

$$E[g(X)] = \sum_{x} g(x) \cdot p(X = x)$$

$$E[X^n] = \sum_{x} x^n \cdot p(X = x)$$

For continuous RV *X*:

$$E[X] = \int_{-\infty}^{\infty} x \cdot f_X(x)$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x)$$

$$E[X^n] = \int_{-\infty}^{\infty} x^n \cdot f_X(x)$$

For both discrete and continuous RVs:

$$E[aX + b] = aE[X] + b$$

$$Var(X) = E[(x - \mu)^2] = E[X^2] - (E[X]^2)$$

$$Var(aX + b) = a^2 Var(X)$$

Expectation of Uniform

$$X \sim \mathrm{Uni}(\alpha, \beta)$$

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

$$= \int_{\alpha}^{\beta} x \cdot \frac{1}{\beta - \alpha} \, dx$$

$$= \frac{1}{\beta - \alpha} \left[\frac{1}{2} x^2 \right]_{\alpha}^{\beta}$$

$$= \frac{1}{\beta - \alpha} \left[\frac{\beta^2}{2} - \frac{\alpha^2}{2} \right]$$

$$= \frac{1}{2} \frac{1}{\beta - \alpha} (\beta + \alpha) (\beta - \alpha)$$

just average the start and end!

$$=\frac{1}{2}(\alpha+\beta)$$

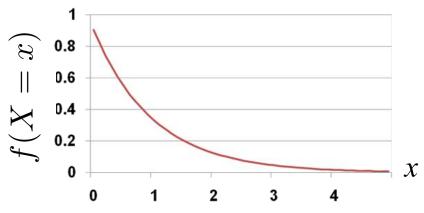
Exponential Random Variable

- X is an **Exponential RV**: $X \sim \text{Exp}(\lambda)$ Rate: $\lambda > 0$
 - Probability Density Function (PDF):

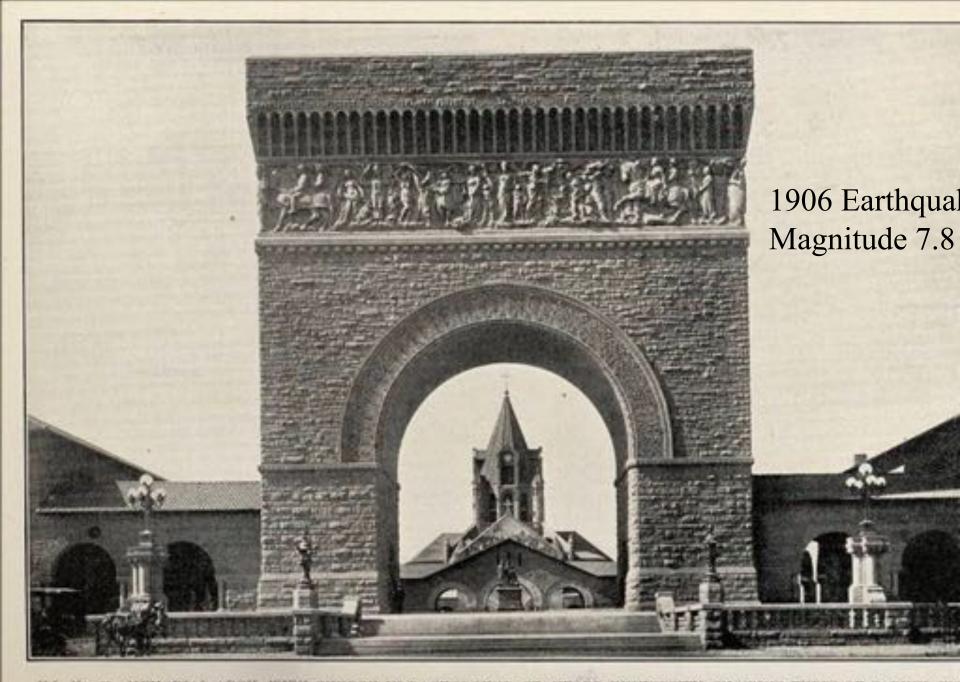
$$f(X = x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

•
$$E[X] = \frac{1}{\lambda}$$

•
$$\operatorname{Var}(X) = \frac{1}{\lambda^2}$$



- Support: $0 \le x \le \infty$
- Represents time until some event
 - Earthquake, request to web server, end cell phone contract, etc.



ILL. No. 65. MEMORIAL ARCH, WITH CHURCH IN BACKGROUND, STANFORD UNIVERSITY, SHOWING TYPES OF CARVED WO WITH THE SANDSTONE.

How Many Earthquakes

Based on historical data, major earthquakes (magnitude 8.0+) happen at a rate of 0.002 per year*. What is the probability of zero major earthquakes magnitude next year?

X = Number of major earthquakes next year

$$X \sim \text{Poi}(\lambda = 0.002)$$

$$P(X=0) = \frac{\lambda^0 e^{-\lambda}}{0!} = \frac{0.002^0 e^{-0.002}}{0!} \approx 0.998$$

Based on historical data, major earthquakes (magnitude 8.0+) happen at a rate of 0.002 per year*. What is the probability of a major earthquake in the next 30 years?

$$Y \sim \text{Exp}(\lambda = 0.002) \qquad f_Y(y) = \lambda e^{-\lambda y}$$
$$= 0.002^{-0.002y}$$
$$P(Y < 30) = \int_0^{30} 0.002e^{-0.002y} dy$$

Integral Review

$$\int e^{cx} dx = \frac{1}{c}e^{cx}$$

Based on historical data, major earthquakes (magnitude 8.0+) happen at a rate of 0.002 per year*. What is the probability of a major earthquake in the next 30 years?

$$Y \sim \text{Exp}(\lambda = 0.002) \qquad f_Y(y) = \lambda e^{-\lambda y}$$

$$= 0.002^{-0.002y}$$

$$P(Y < 30) = \int_0^{30} 0.002 e^{-0.002y} dy$$

$$= 0.002 \left[-500 e^{-0.002y} \right]_0^{30}$$

$$= \frac{500}{500} (-e^{-0.06} + e^0) \qquad \approx 0.06$$

Based on historical data, major earthquakes (magnitude 8.0+) happen at a rate of 0.002 per year*. What is the expected number of years until the next earthquake?

$$Y \sim \text{Exp}(\lambda = 0.002)$$

$$E[Y] = \frac{1}{\lambda} = \frac{1}{0.002} = 500$$

Based on historical data, major earthquakes (magnitude 8.0+) happen at a rate of 0.002 per year*. What is the standard deviation of years until the next earthquake?

$$Y \sim \text{Exp}(\lambda = 0.002)$$

$$Var(Y) = \frac{1}{\lambda^2} = \frac{1}{0.002^2} = 250,000 \text{ years}^2$$

$$Std(Y) = \sqrt{Var(X)} = 500 \text{ years}$$

Is there a way to avoid integrals?

Cumulative Density Function

A cumulative density function (CDF) is a "closed form" equation for the probability that a random variable is less than a given value

$$F(x) = P(X < x)$$

If you learn how to use a cumulative density function, you can avoid integrals!

$$F_X(x)$$
 This is also shorthand notation for the PMF

$$F(x) = P(X < x)$$

$$x = 2$$

$$0.03125$$

CDF of an Exponential

$$F_X(x) = 1 - e^{-\lambda x}$$

$$P(X < x) = \int_{y=-\infty}^{x} f(y) dy$$

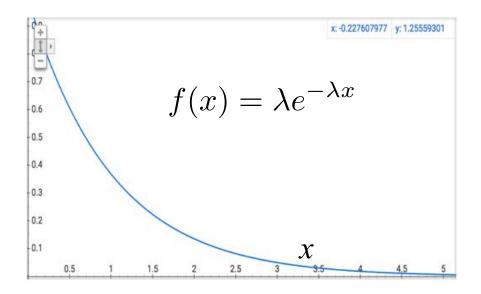
$$= \int_{y=0}^{x} \lambda e^{-\lambda y} dy$$

$$= \frac{\lambda}{\lambda} \left[-e^{-\lambda y} \right]_{0}^{x}$$

$$= \left[-e^{-\lambda x} \right] - \left[-e^{\lambda 0} \right]$$

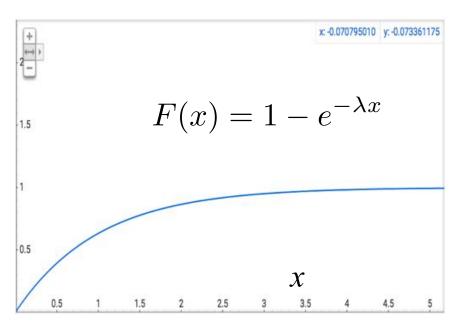
$$= 1 - e^{-\lambda x}$$

Probability density function

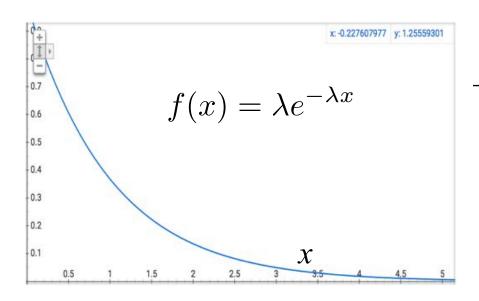


$$F_X(x) = P(X < x)$$

$$= \int_{y=-\infty}^{x} f(y) dy$$



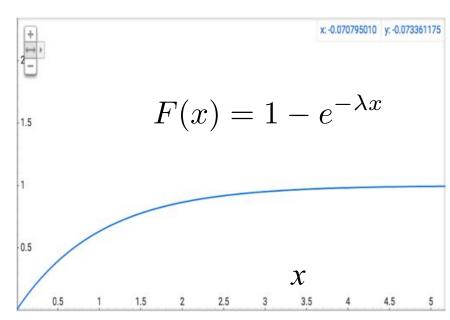
Probability density function



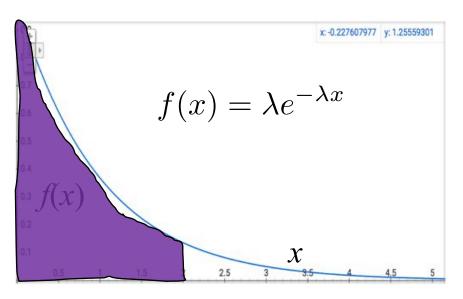
 $P(X \le 2)$

$$F_X(x) = P(X < x)$$

$$= \int_{y=-\infty}^{x} f(y) dy$$



Probability density function

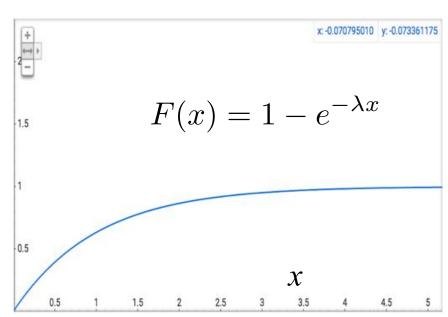


$$P(X \le 2)$$

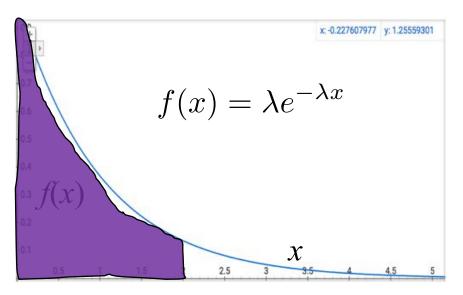
$$= \int_{x=-\infty}^{2} f(x) \ dx$$

$$F_X(x) = P(X < x)$$

$$= \int_{y=-\infty}^{x} f(y) dy$$



Probability density function

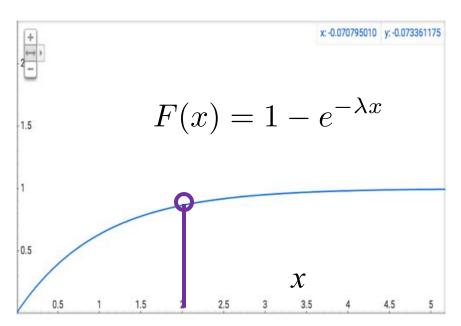


$$= \int_{x=-\infty}^{2} f(x) \ dx$$

Cumulative density function

$$F_X(x) = P(X < x)$$

$$= \int_{y=-\infty}^{x} f(y) dy$$



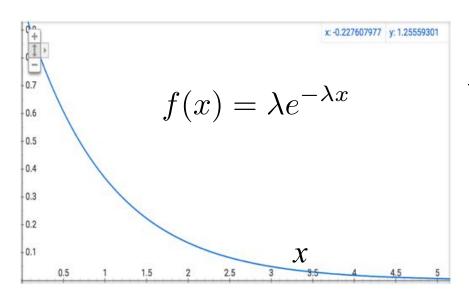
or

$$= F(2)$$

$$=1-e^{-2}$$

$$\approx 0.84$$

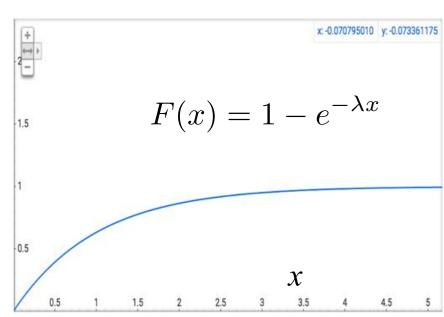
Probability density function



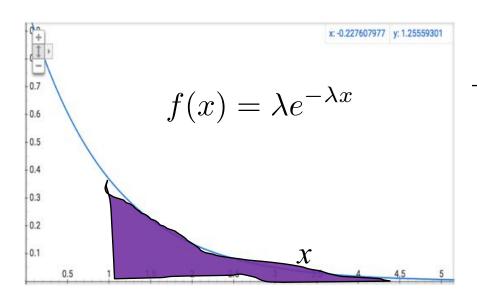
P(X > 1)

$$F_X(x) = P(X < x)$$

$$= \int_{y=-\infty}^{x} f(y) dy$$



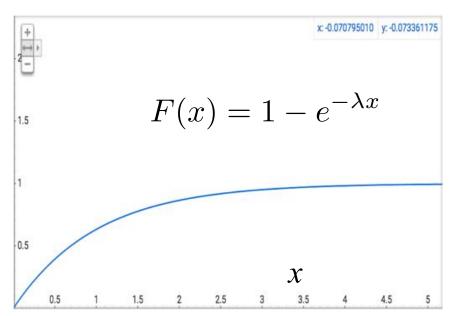
Probability density function



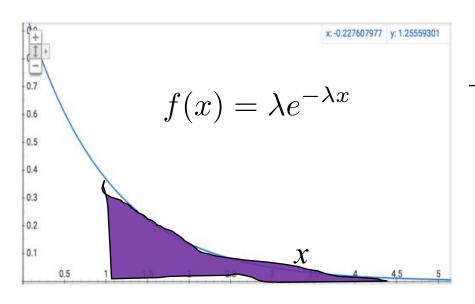
$$= \int_{x=1}^{\infty} f(x) \ dx$$

$$F_X(x) = P(X < x)$$

$$= \int_{y=-\infty}^{x} f(y) dy$$



Probability density function

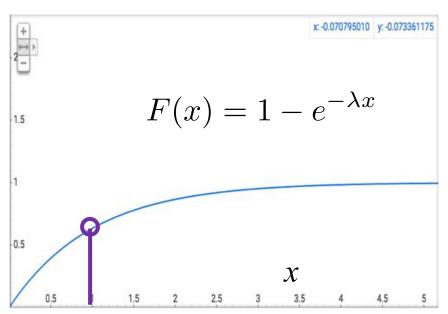


$$= \int_{x=1}^{\infty} f(x) \ dx$$

Cumulative density function

$$F_X(x) = P(X < x)$$

$$= \int_{y=-\infty}^{x} f(y) dy$$



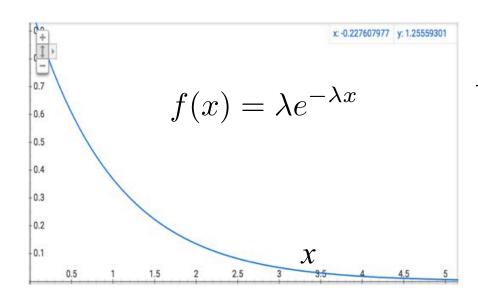
or

$$= 1 - F(1)$$

$$= e^{-1}$$

$$\approx 0.37$$

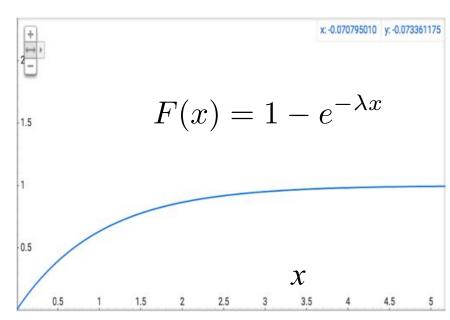
Probability density function



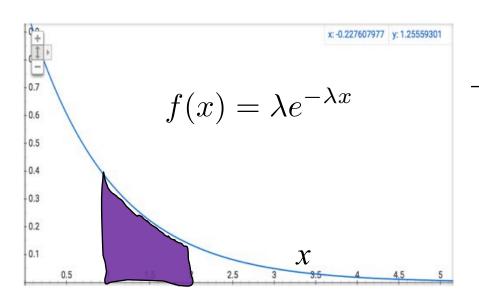
P(1 < X < 2)

$$F_X(x) = P(X < x)$$

$$= \int_{y=-\infty}^{x} f(y) dy$$



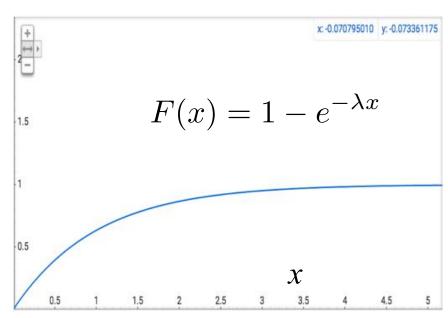
Probability density function



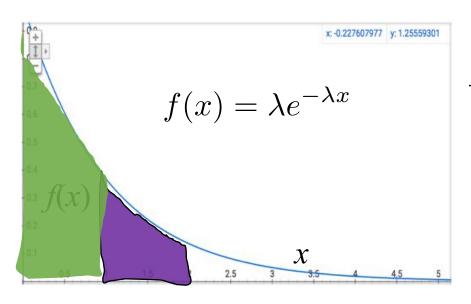
$$= \int_{x=1}^{2} f(x) \ dx$$

$$F_X(x) = P(X < x)$$

$$= \int_{y=-\infty}^{x} f(y) dy$$



Probability density function

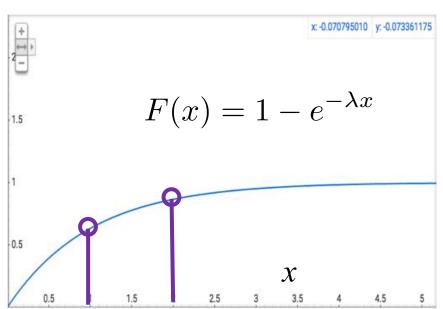


$$= \int_{x=1}^{2} f(x) dx$$

Cumulative density function

$$F_X(x) = P(X < x)$$

$$= \int_{y=-\infty}^{x} f(y) dy$$
0.5



or

$$= F(2) - F(1)$$

$$= (1 - e^{-2}) - (1 - e^{-1})$$

$$\approx 0.23$$

Probability of Earthquake in Next 4 Years?

Based on historical data, earthquakes of magnitude 8.0+ happen at a rate of 0.002 per year*. What is the probability of an major earthquake in the next 4 years?

Y = Years until the next earthquake of magnitude 8.0+

$$Y \sim \text{Exp}(\lambda = 0.002)$$
 $F(y) = 1 - e^{-0.002y}$

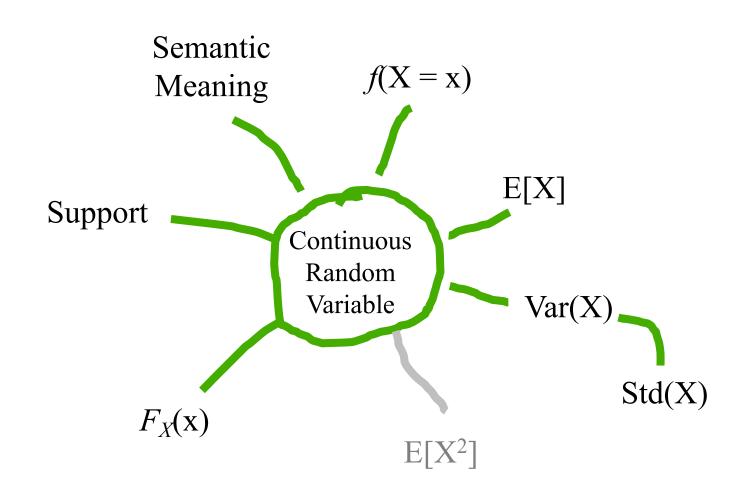
$$P(Y < 4) = F(4)$$

$$= 1 - e^{-0.002 \cdot 4}$$

$$\approx 0.008$$

Feeling lucky?

Properties for Continuous Random Variables



Extra Problems

Visits to a Website

- Say visitor to your web site leaves after X minutes
 - On average, visitors leave site after 5 minutes
 - Assume length of stay is Exponentially distributed
 - $X \sim \text{Exp}(\lambda = 1/5)$, since $E[X] = 1/\lambda = 5$
 - What is P(X > 10)?

$$P(X > 10) = 1 - F(10) = 1 - (1 - e^{-\lambda 10}) = e^{-2} \approx 0.1353$$

• What is P(10 < X < 20)?

$$P(10 < X < 20) = F(20) - F(10) = (1 - e^{-4}) - (1 - e^{-2}) \approx 0.1170$$

Replacing Your Laptop

- X = # hours of use until your laptop dies
 - On average, laptops die after 5000 hours of use
 - $X \sim \text{Exp}(\lambda = 1/5000)$, since $E[X] = 1/\lambda = 5000$
 - You use your laptop 5 hours/day.
 - What is P(your laptop lasts 4 years)?
 - That is: P(X > (5)(365)(4) = 7300)

$$P(X > 7300) = 1 - F(7300) = 1 - (1 - e^{-7300/5000}) = e^{-1.46} \approx 0.2322$$

Better plan ahead... especially if you are coterming:

$$P(X > 9125) = 1 - F(9125) = e^{-1.825} \approx 0.1612$$
 (5 year plan)

$$P(X > 10950) = 1 - F(10950) = e^{-2.19} \approx 0.1119$$
 (6 year plan)

Exponential is Memoryless

- X = time until some event occurs
 - X ~ Exp(λ)
 - What is P(X > s + t | X > s)?

$$P(X > s + t \mid X > s) = \frac{P(X > s + t \text{ and } X > s)}{P(X > s)} = \frac{P(X > s + t)}{P(X > s)}$$

$$\frac{P(X > s + t)}{P(X > s)} = \frac{1 - F(s + t)}{1 - F(s)} = \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda t} = 1 - F(t) = P(X > t)$$

So,
$$P(X > s + t | X > s) = P(X > t)$$

- After initial period of time s, P(X > t | ●) for waiting another t units of time until event is same as at start
- "Memoryless" = no impact from preceding period s

Disk Crashes

X = days of use before your disk crashes

$$f(x) = \begin{cases} \lambda e^{-x/100} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

- First, determine λ to have actual PDF
 - ∘ Good integral to know: $\int e^u du = e^u$

$$1 = \int \lambda e^{-x/100} dx = -100\lambda \int \frac{-1}{100} e^{-x/100} dx = -100\lambda e^{-x/100} \Big|_{0}^{\infty} = 100\lambda \implies \lambda = \frac{1}{100}$$

• What is P(50 < X < 150)?

$$F(150) - F(50) = \int_{50}^{150} \frac{1}{100} e^{-x/100} dx = -e^{-x/100} \Big|_{50}^{150} = -e^{-3/2} + e^{-1/2} \approx 0.383$$

• What is P(X < 10)?

$$F(10) = \int_{0}^{10} \frac{1}{100} e^{-x/100} dx = -e^{-x/100} \Big|_{0}^{10} = -e^{-1/10} + 1 \approx 0.095$$

Zipf Random Variable

- X is <u>Zipf</u> RV: X ~ Zipf(s)
 - X is the rank index of a chosen word

